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Bacteriorhodopsin (bR), the protein pigment of the purple 
membrane (PM) light-driven proton pump, is a single polypeptide 
chain of 248 amino acids.1 It traverses the membrane to form 
seven rods2 of high a-helical character.3 PM's color results from 
the presence of an equivalent of retinal, bound as a protonated 
Schiff base (PRSB) at lysine 216, and its interaction with the 
protein. Light initiates a photocycle where the first step is a 
photoisomerization of all-trans-ietina.1 to the 13-cw isomer. All 
subsequent steps in the cycle are thermal dark reactions. The 
all-trans -*• 13-cis photoisomerization has been shown to be 
obligatory for proton pumping,4 and consequently, the thermal 
reisomerization of 13-C/J - • all-trans in the latter part of the 
cycle is required for continual turnover. We report herein the 
synthesis and incorporation into bacterioopsin of a novel analogue, 
13-acetoxy-13-desmethylretinal, 1, designed to probe the mecha­
nism of dark cis-trans isomerization. 

Thermal cis-trans isomerization also occurs upon dark 
adaptation5 (all-trans,\S-anti -*• \5-cis,\5-syn) and is dynamic 
(\3-cis,l5-syn =̂- all-trans,\5-anti) while in the dark-adapted 
state (bRDA).6 These double cis-trans isomerization reactions 
apparently proceed by a concerted one-step bicycle-pedal mecha­
nism.7 

The chromophore, except for the Schiff base proton, appears 
to be well shielded from solvent by the protein and lipid bilayer 
and suggests that the protein itself catalyzes dark cis-trans 
isomerization. We have noted previously that catalysis could be 
achieved by two mechanisms: (1) removal of the counteranion 
(aspartate 212) from the vicinity of the protonated Schiff base 
nitrogen and (2) the introduction of a negative charge or the 
addition of a nucleophile at C13 of the PRSB.8 Similar schemes 
with variation have been advanced by others.9 The catalytic effect 
of removing the counteranion has been demonstrated in a model 
system10 and more recently in a bR mutant where the counterion 
could be partially neutralized.1' We have suggested,6'8 however, 
that the two types of catalytic enhancements could be ac-
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complished in one act by the addition of aspartate 21212 to the 
PRSB at Cl3 to provide an intermediate which could undergo 
internal rotation about the C15-N and/or the C 13-Cl 4 bonds 
(eq 1). Asp-212, shown by FTIR studies to be deprotonated,13 

A" = aspartate-212 R = 

and Lys-216 are one above the other on the same side of the helix 
in close proximity. Recent structural data show Asp-212 as part 
of a complex counteranion of the positively charged Schiff base 
nitrogen where its nearest oxygen is 3.6 A from nitrogen.14 That 
same oxygen is also within 4 A of retinal's Cl3 and could, by a 
microconformational change, move closer to add to C13. Such 
a mechanism involving reversible addition of a nucleophile to 
Cl 3 provides a rationale for the regiospecificity of isomerization 
(only \3-cis and all-trans are observed in this system) and is 
similar to the mechanism encountered in enzyme-catalyzed cis-
trans isomerization where bicycle-pedal double isomerization has 
also been observed.15 Previous studies reported from this 
laboratory support a nucleophilic mechanism for thermal PRSB 
cis-trans isomerization.8,10'16 

We reasoned that if Asp-212 participated as proposed, a retinal 
analogue, 1, possessing a good leaving group at C13, might trap 
the nucleophile and lead to a cross-linked chromophore to render 
the membrane inactive (Scheme 1). Nucleophilic addition of 
Asp-212's carbbxyl to 1 at Cl3 would provide an almost 
symmetrical intermediate 2 where loss of acetate could compete 
with loss of aspartate. 13-Acetoxy-13-desmethylretinal (1) was 
synthesized from /3-ionone according to Scheme 2.17 The C15 
aldehyde (3), synthesized by methods reported in the literature,18 

was treated with acetylacetaldehyde dimethyl acetal in THF and 
2 equiv of NaH to obtain the 13-keto 15-dimethyl acetal (4). 
Treatment of 4 with lithium diisopropylamide generated its 
enolate, which was then acetylated with AC2O/DMAP to furnish 
13-acetoxy-13-desmethylretinal 15,15-dimethyl acetal (5). Gentle 
hydrolysis of 5 in acetone, catalyzed by Bio-Rad AG 50W-Xl 
(H+ form) and monitored by HPLC, furnished a mixture of several 
products where two aldehyde components (S 10.16, d, and 9.77, 
d) and the 13-keto 15-enol acetate (6, S 8.22, d) were detected 
by NMR (acetone-^). Acids and acidic media, e.g., silica gel, 
readily catalyze the conversion of 1 to 6. 13-cis-1, however, was 
purified by HPLC on a cyano column (Et20/hexane) end-capped 
with TMS groups.19 Hydrolysis at the keto dimethyl acetal (4) 
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stage and attempted acetylation of the anticipated 13-keto,15-
enol/15-aldo,13-enol mixture under varied conditions, however, 
resulted instead in only the formation of the 13-keto 15-enol 
acetate (6). MM2 molecular mechanics coupled with AMI 
semiempirical quantum calculations indicate that 6 is 4.8 kcal/ 
mol more stable than 1, providing a rationale for the ready 
conversion of 1 to 6. 

13-cis-l forms a pigment (13-Ac-bR) with bacterioopsin in 
the dark which initially absorbs at 559 nm, but within 1 h in the 

(19) The elution order is 6, all-trans-1, U-cis-1. H-12 for li-cis-1 is at 
S 7.22, indicative of a 13-ci'J geometry .20 all-trans-1 has not yet been successfully 
separated from a coeluting impurity. 

(20) Liu, R. S. H.; Asato, A. E. Methods Enzymol. 1982, 88 (Part I), 
506-516. 
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Figure 1. The course of replacement of 1 in 13-Ac-bR by all-trans-
retinal. All operations are carried out in the dark under dim red light. 
13-Ac-bR is fully formed, and the sample is divided exactly in half. To 
one (circles) is added excess a//-tra/u-retinal immediately. The other 
(triangles) is allowed to sit for a week before the same excess amount of 
a//-f/wts-retinal is added. 

dark its maximum moves to 573 nm, 15 nm red-shifted with 
respect to that for native bRDA. The Xn^ (EtOH) of 13-or-l is 
383 nm. The substantial red shift indicates protonated Schiff 
base formation between 13-cw-l and the protein and that the 
chromophore fits well into the retinal binding pocket.21 The 559 
—* 573 shift is reminiscent of the shift observed upon dark 
adaptation of native bR initially formed from 13-cfc-retinal. 
Synthetic bR chromophores often undergo replacement by all-
fran?-retinal. Addition of excess a/Z-zrans-retinal to 13-Ac-bR 
results in the slow replacement of 1 by the native chromophore 
as evidenced by a shift of the maximum to 558 nm and an increase 
in absorbance. The non-pseudo first order kinetics exhibit a half-
time of about 12 h at ambient temperature. 

Upon long standing in the dark the 573 nm absorption of 13-
Ac-bR slowly decreases with a concomitant increase in absorption 
at 406 nm indicative of a transformation. At ambient temperature 
about half of the 573 nm absorption is lost in 8 days. Addition 
of equal amounts of excess a//-fra/u-retinal to equal aliquots of 
(a) freshly formed 13-Ac-bR and (b) an identical sample after 
1 week in the dark indicates that the 13-Ac-bR aliquot suffering 
a substantial loss of its 573 nm absorption also loses a substantial 
amount of its ability to bind all-trans-retinal (Figure 1) by forming 
an intermediate which is not readily hydrolyzed.22 The nature 
of this inactivation reaction is under investigation and will be 
reported in the future. 
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